Tensor BM-Decomposition for Compression and Analysis of Spatio-Temporal Third-order Data

Fan Tian*, Misha Kilmer*, Eric Miller[‡], Abani Patra[§]

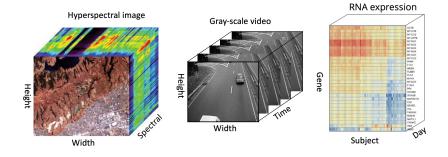
Tufts University * Department of Mathematics ‡ Electrical and Computer Engineering § Computer Science Department

September 30, 2023

(Tufts)

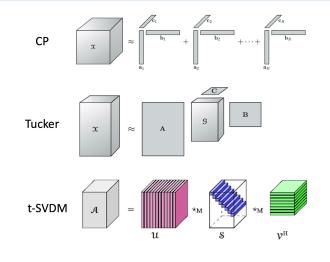
Motivation: Tensors as multi-way arrays

Some real-world data are naturally stored as multi-way data arrays. Example three-way data



L Ziph Schatzberg: Hyperspectral imaging enables industrial applications, in: Industrial Photonic 2014; Anna Konstorum et al.: Platelet response to influenza vaccination reflects effects of aging, in: Aging Cell 22.2 (2023), e13749.

Popular tensor decomposition methods

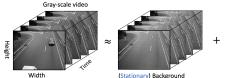


Misha E Kilmer et al.: Tensor-tensor algebra for optimal representation and compression of multiway data, in: Proceedings of the National Academy of Sciences 118.28 (2021), e2015851118; Tamara G Kolda/Brett W Bader: (Tufts)

2023 AWM Research Symposium

Video processing motivated tensor decomposition

Task: decomposing (surveillance) video



(Stationary) Background

(Non-Stationary) Foreground

Fan Tian et al.: Tensor BM-Decomposition for Compression and Analysis of Spatio-Temporal Third-order Data, in: arXiv preprint arXiv:2306.09201 2023.

Fan Tian (Tufts) 2023 AWM Research Symposium

Video processing motivated tensor decomposition

Task: decomposing (surveillance) video

Decomposition based methods:

- background: compressed, well-approximated
- foreground: subtract background from the original video

Tian et al.: Tensor BM-Decomposition for Compression and Analysis of Spatio-Temporal Third-order Data (see n.).

Video processing motivated tensor decomposition

Task: decomposing (surveillance) video

Decomposition based methods:

- background: compressed, well-approximated
- foreground: subtract background from the original video

Goal: achieve a compressive background/foreground separation in the decomposition.

Tian et al.: Tensor BM-Decomposition for Compression and Analysis of Spatio-Temporal Third-order Data (see n.).

Video processing motivated tensor decomposition

Task: decomposing (surveillance) video

Decomposition based methods:

- background: compressed, well-approximated
- foreground: subtract background from the original video

Goal: achieve a compressive background/foreground separation in the decomposition.

New tensor method: Bhattacharya-Mesner (BM) decomposition based on tensor BM-product.

Tian et al.: Tensor BM-Decomposition for Compression and Analysis of Spatio-Temporal Third-order Data (see n.).

Bhattacharya-Mesner (BM) Product

Definition. For a third order conformable tensor triplet $\mathbf{A} \in \mathbb{R}^{m \times \ell \times p}$, $\mathbf{B} \in \mathbb{R}^{m \times n \times \ell}$, $\mathbf{C} \in \mathbb{R}^{\ell \times n \times p}$, the BM-product $\mathbf{X} = \text{BMP}(\mathbf{A}, \mathbf{B}, \mathbf{C}) \in \mathbb{R}^{m \times n \times p}$ is given entry-wise by

$$\mathbf{X}[i,j,k] = \sum_{1 \le t \le \ell} \mathbf{A}[i,t,k] \mathbf{B}[i,j,t] \mathbf{C}[t,j,k]$$

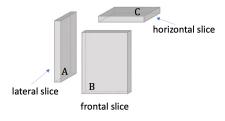
Dale M Mesner/Prabir Bhattacharya: Association schemes on triples and a ternary algebra, in: Journal of Combinatorial Theory, Series A 55.2 (1990), pp. 204–234.

Bhattacharya-Mesner (BM) Product

Definition. For a third order conformable tensor triplet $\mathbf{A} \in \mathbb{R}^{m \times \ell \times p}$, $\mathbf{B} \in \mathbb{R}^{m \times n \times \ell}$, $\mathbf{C} \in \mathbb{R}^{\ell \times n \times p}$, the BM-product $\mathbf{X} = \text{BMP}(\mathbf{A}, \mathbf{B}, \mathbf{C}) \in \mathbb{R}^{m \times n \times p}$ is given entry-wise by

$$\mathbf{X}[i,j,k] = \sum_{1 \le t \le \ell} \mathbf{A}[i,t,k] \mathbf{B}[i,j,t] \mathbf{C}[t,j,k]$$

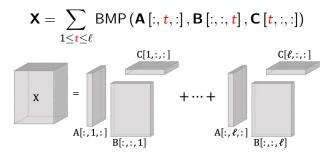
When $\ell = 1$, this describes a BM outer-product of matrix slices.



Mesner/Bhattacharya: Association schemes on triples and a ternary algebra (see n.).

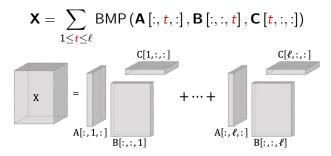
Tensor BM-rank

Equivalently, the BM-product can be written as a sum of BM outer-products of matrix slices



Tensor BM-rank

Equivalently, the BM-product can be written as a sum of BM outer-products of matrix slices



The BM-rank, r, of $\mathbf{X} \in \mathbb{R}^{m \times n \times p}$ is:

- the minimum number of BM outer-products of matrix slices that sum up to **X**.
- upper bounded by $\min(m, n, p)$.

Applications

Conclusion and future work

BM-rank ℓ approximation

Find ℓ , $1 \leq \ell \leq r$, BM-rank 1 terms best approximates **X** by solving

$$\min_{\hat{\mathbf{X}}} \|\mathbf{X} - \hat{\mathbf{X}}\|_F^2 \text{ with } \hat{\mathbf{X}} = \sum_{t=1}^{\ell} \mathsf{BMP}\left(\mathbf{A}[:,t,:],\mathbf{B}[:,:,t],\mathbf{C}[t,:,:]\right).$$

where $\|\cdot\|_F$ is the Frobenius norm of **X** given by

$$\|\mathbf{X}\|_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p} |\mathbf{X}[i, j, k]|^{2}}.$$

Applications

Conclusion and future work

BM-rank ℓ approximation

Find ℓ , $1 \leq \ell \leq r$, BM-rank 1 terms best approximates **X** by solving

$$\min_{\hat{\mathbf{X}}} \|\mathbf{X} - \hat{\mathbf{X}}\|_F^2 \text{ with } \hat{\mathbf{X}} = \sum_{t=1}^{\ell} \mathsf{BMP}\left(\mathbf{A}[:,t,:],\mathbf{B}[:,:,t],\mathbf{C}[t,:,:]\right).$$

where $\|\cdot\|_F$ is the Frobenius norm of **X** given by

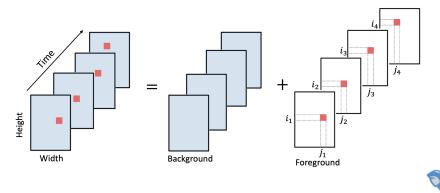
$$\|\mathbf{X}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^p |\mathbf{X}[i,j,k]|^2}.$$

- Solved by Alternating Least-Squares algorithm.
- Achieve good results when provided a good initial guess.

One-pixel spatiotemporal motion model

Assume an object of intensity α and size 1 \times 1 moving on a constant background.

Location at time k is (i_k, j_k) .

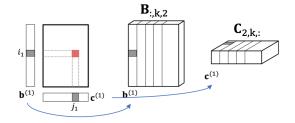


(Tufts)

Applications

Conclusion and future work

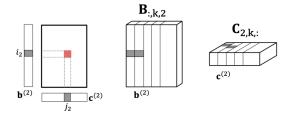
Video foreground motion



Applications

Conclusion and future work

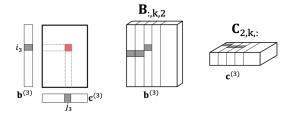
Video foreground motion



Applications

Conclusion and future work

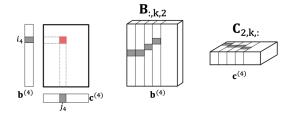
Video foreground motion



Applications

Conclusion and future work

Video foreground motion

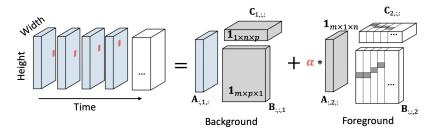


Applications

Conclusion and future work

Tensor reconstruction

Video can be represented exactly by a BM-rank 2 tensor

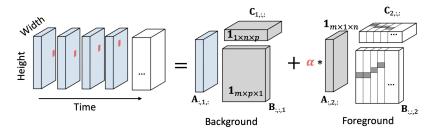


Applications

Conclusion and future work

Tensor reconstruction

Video can be represented exactly by a BM-rank 2 tensor



- This model can be generalized with groups of pixels of different intensities all moving.
- Small BM-rank can capture this type of spatiotemporal data.

Escalator Video

Conclusion and future work

Application to spatiotemporal third-order data

Real-world video experiment: Car Video

Frame 54

Frame 110

Frame 54

Frame 110

Application to spatiotemporal third-order data

Real-world video experiment: Car Video

Escalator Video

Frame 54

Frame 110

Frame 54

Frame 110

BM-rank ℓ decomposition of video data (order frames as lateral slices):

- Background reconstruction: $\mathbf{X}_{bg} = \mathsf{BMP}(\mathbf{A}_{:,1,:}, \mathbf{B}_{:,:,1}, \mathbf{C}_{1,:,:}).$
- Foreground reconstruction: $\mathbf{X}_{fg} = \sum_{t=2}^{c} BMP(\mathbf{A}_{:,t,:}, \mathbf{B}_{:,:,t}, \mathbf{C}_{t,:,:}).$

 $\underset{OO}{\text{Conclusion and future work}}$

Application to spatiotemporal third-order data

Real-world video experiment: Car Video

Escalator Video

Frame 54

Frame 110

Frame 54

Frame 110

BM-rank ℓ decomposition of video data (order frames as lateral slices):

- Background reconstruction: $\mathbf{X}_{bg} = \mathsf{BMP}(\mathbf{A}_{:,1,:}, \mathbf{B}_{:,:,1}, \mathbf{C}_{1,:,:}).$
- Foreground reconstruction: $\mathbf{X}_{fg} = \sum_{t=2}^{5} BMP(\mathbf{A}_{:,t,:}, \mathbf{B}_{:,:,t}, \mathbf{C}_{t,:,:}).$

Initial guess:

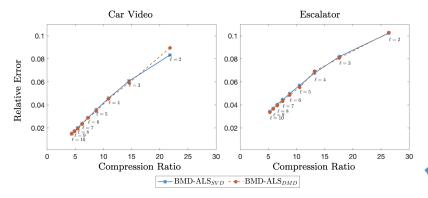
- Spatiotemporal Slice-based SVD (SS-SVD)
- Dynamic Mode Decomposition (DMD)

Applications

Conclusion and future work

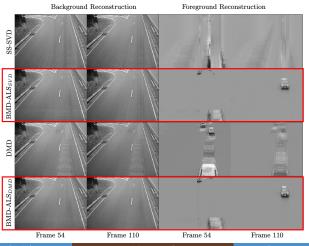
Compression comparison

Car video: $120 \times 120 \times 160$. Escalator video: $130 \times 200 \times 160$. CR= $\frac{\text{uncompressed size}}{\text{compressed size}} = \frac{\ell(mn+mp+np)}{mnp}$; RE= $\frac{\|\mathbf{X} - \hat{\mathbf{X}}\|_F}{\|\mathbf{X}\|_F}$. Set $\ell = 2, \dots, 10$.



Application to spatiotemporal third-order data

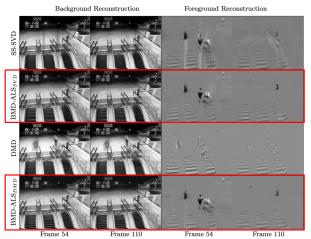
Car video: $120 \times 120 \times 160$. BM-rank: $\ell = 3$.



16 / 19

Application to spatiotemporal third-order data

Escalator video: $130 \times 200 \times 160$. BM-rank: $\ell = 5$.



We have

- Introduced the BM-decomposition framework based on tensor BM-product.
- Demonstrated that we can achieve a compressive background/foreground separation with a small BM-rank decomposition.

We have

- Introduced the BM-decomposition framework based on tensor BM-product.
- Demonstrated that we can achieve a compressive background/foreground separation with a small BM-rank decomposition.

We will

- Apply BM-decomposition to other tasks such as tensor completion.
- Analyse three-way correlations for data with different characteristics in each dimension.

(Tufts)

Applications

Conclusion and future work $_{\bigcirc \bullet}$

Thank you!

