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Data, data everywhere

• Data as matrices

• Data is typically too large to store, transport, or process locally.

Problem

Given a large-scale low-rank matrix or tensor, how can one (a) store and (b)

retrieve the original matrix?
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Matrix Sketching

Idea

Instead of storing large n1 × n2 data X , keep lower dimensional sketches of

the original data set.

Idea

Instead of storing large n1 × n2 data X , keep lower dimensional sketches of

the original data set and recover X via1

X̂ = Ỹ ∗(SỸ ∗)†Y .

1Fazel, Candes, Recht, and Parrilo. “Compressed sensing and robust recovery of low rank

matrices” (2008).
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Noisy Sketches

• Corruptions in data storage, transfer, or sensing

• Noise by design: Differential Privacy2

2Upadhyay “The Price of Privacy for Low-rank Factorization” (2018).
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Problem: Matrix Setting

• Low rank matrix: X0 ∈ Cn1×n2 : a matrix of rank r0

• Sketching matrices: S ∈ Cr×n1 , S̃ ∈ Cr×n2 be two independent complex

Gaussian random matrices with r ≥ r0

• Noise: Z ∈ Cr×n2 , Z̃ ∈ Cr×n1 , and Z̃ is independent of S .

• Sketches3:

Y = SX0 + Z

Ỹ = S̃X ∗
0 + Z̃

• Recovery:

X = Ỹ ∗(SỸ ∗)†Y .

3Fazel, Candes, Recht, and Parrilo. “Compressed sensing and robust recovery of low rank

matrices” (2008).
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Main Result: Robust Recovery

Theorem (M., Stöger, Zhu, 2023)

Let S ∈ Cr×n1 , S̃ ∈ Cr×n2 be two independent standard complex Gaussian

matrices. Let Z ∈ Cr×n1 be any matrix, and Z̃ ∈ Cr×n2 be a matrix such that

(S̃ , Z̃) is independent of S , and Ỹ = S̃X ∗
0 + Z̃ be almost surely of rank r with

r0 < r < n1. For any δ1, δ2, ϵ > 0 such that 1 > δ2 > exp
(
−
(√

r −√
r0
)2)

and ϵ < 1, with probability at least 1− δ1 − δ2 − ϵ, the output X satisfies

∥X − X0∥F ≤
√

r(n1 − r)∥Z̃∥F√
δ1(

√
r −√

r0 −
√

log(1/δ2))
+

√
r∥Z∥F√

log(1/(1− ϵ))
.

5



Matrix Experiments

Figure 1: ∥Z∥F = ε1 and ∥Z̃∥F = ε2 for X ∈ R100×100, r = 10, and (left) r = r0 + 1

(center) r = 2r0 (right) r = n − 1.
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Application to Low-rank Matrix Approximation

• Approximately Low rank matrix: X0 ∈ Cn1×n2 : a matrix of rank r0

• X0 = X1 + E where X1 is the best rank r1 approximation of X0

• Sketches:

Y = SX0 + Z = SX1 + (SE + Z),

Ỹ = S̃X ∗
0 + Z̃ = S̃X ∗

1 + (S̃E∗ + Z̃).

• Recovery:

X = Ỹ ∗(SỸ ∗)†Y .
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Application: Low-rank Matrix Approximation

Corollary: Low-rank matrix approximation (M., Stöger, Zhu, 2023)

Let r1 < r < n1. With probability at least 1− δ1 − 3δ2 − ϵ and when Ỹ is of

rank r , the output X satisfies

∥X − X0∥2→2 ≤ σr1+1 (X0)κ+ σ,

where

κ =

√
r(n1 − r)(

√
r +

√
n2 +

√
log(1/δ2))√

δ1(
√
r −√

r1 −
√

log(1/δ2))
+

√
r
(√

r +
√
n1 +

√
log(1/δ2)

)
√

log(1/(1− ϵ))
+ 1


σ =

√
r(n1 − r)∥Z̃∥2→2√

δ1(
√
r −√

r1 −
√

log(1/δ2))
+

√
r∥Z∥2→2√

log(1/(1− ϵ))
.
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And Tensors too!

• Data as tensors

• Data can (still) be too large to store, transport, or process locally.
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Problem: Tensor Setting

• Low-tubal-rank Tensor: X0 ∈ Cn1×n2×n3 with rank r0

• Sketching tensors: Let S ∈ Cr×n1 , S̃ ∈ Cr×n2 be two independent complex

standard Gaussian random matrices with r0 < r < n1.

S1 = S , S̃1 = S̃ and Sk = S̃k = 0 for all k ∈ {2, . . . , n3}

• Noise: Z ∈ Cr×n2×n3 , Z̃ ∈ Cr×n1×n3

• Sketches:

Y = S ∗ X0 + Z,

Ỹ = S̃ ∗ X ∗
0 + Z̃,

• Previous related works:

• Matricization: Related work considered the recovery of low-tubal-rank

tensors through general linear Gaussian measurements of the form

y = Avec(X ) - e.g.,

Lu, Feng, Lin, and Yan. “Exact low tubal rank tensor recovery from

Gaussian measurements” (2018).

• Noiseless: Qi and Yu.”T-singular values and t-sketching for third order

tensors” (2021).
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Tensor Set up: t-product

• The t-product was originally introduced in 2011 by Kilmer and Martin for

order three tensors, motivated to be a natural extension of matrix

multiplication

• Can be efficiently implemented using Fast Fourier Transforms

• Applied to problems in: Image deblurring, face recognition, video

compression, and much more

• Has been generalized to higher order tensors and well as different

transforms

• Advantage of using t-product: Linear-algebraic like framework (intuitive

extensions of notions such as transpose, identity, etc.)

• Trade-off: Orientation dependence
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Tensor Set up: Notation

Definition (Operations on tensors)

Let A ∈ Cn1×n2×n3 . The unfold of a tensor is defined to be the frontal slice

stacking of that tensor. In other words,

unfold(A) =


A1

A2

...

An3

 ∈ Cn1n3×n2 ,

where Ai = A:,:,i denotes the i th frontal slice of A. We define the inverse of

the unfold(·) as fold(·) so that fold(unfold(A)) = A. The block circulant

matrix of A is:

bcirc(A) =


A1 An3 An3−1 . . . A2

A2 A1 An3 . . . A3

...
...

...
. . .

...

An3 An3−1 An3−2 . . . A1

 ∈ Cn1n3×n2n3 .
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Tensor Set Up: Notation

Definition (Tensor t-product)

Let A ∈ Cn1×ℓ×n3 and B ∈ Cℓ×n2×n3 then the t-product between A and B,
denoted A ∗ B, is a tensor of size n1 × n2 × n3 as is computed as:

A ∗ B = fold(bcirc(A)unfold(B)).

Definition (Mode-3 fast Fourier transformation (FFT))

The mode-3 FFT of a tensor A, denoted Â, is obtained by applying the

discrete Fourier Transform matrix, F ∈ Cn3×n3 , to each Ai,j,: of A:

Âi,j,: = FAi,j,:.

Here, F is a unitary matrix, Ai,j,: is an n3-dimensional vector, and the product

is the usual matrix-vector product.
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Tensor Set Up: Low tubal rank

Definition (t-SVD)

The Tensor Singular Value Decomposition (t-SVD) of a tensor

M ∈ Cn1×n2×n3 is given by

M = U ∗ S ∗ V∗,

where U ∈ Cn1×n1×n3 and V ∈ Cn2×n2×n3 are unitary tensors and

S ∈ Rn1×n2×n3 is a tubal tensor (a tensor in which each frontal slice is

diagonal), and ∗ denotes the t-product.

Definition (Tubal rank)

The tubal rank of a tensor M = U ∗ S ∗ V∗ is the number of non-zero

singular tubes of S.
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Low Tubal-Rank Tensor Recovery

After performing a mode-3 Fourier transformation (3) on the tensors, the

measurements Ŷ and ̂̃Y can be decomposed into n3 low-rank matrix double

sketches:

Ŷi = Ŝi X̂0 i + Ẑ, ̂̃Y i =
̂̃S i ∗ X̂ ∗

0 i +
̂̃Z i , i ∈ [n3].

The double sketch algorithm outputs

X̂i =
̂̃Y∗

i (Ŝi
̂̃Y∗

i )
†Ŷi .
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Main Result: Tensor Recovery

Corollary: Robust Recovery of Low-Tubal-Rank Tensors (M., Stöger,

Zhu, 2023)

If r0 < r < n1 and for all k ∈ [n3],
ˆ̃Yk is of rank r , then for any δ1, δ2, ϵ > 0

such that 1 > δ2 > exp(−(
√
r −√

r0)
2) and ϵ < 1, with probability at least

1− (δ1 + δ2 + ϵ)n3,

∥X − X0∥2F ≤ 2r(n1 − r)∥Z̃∥2F
δ1(

√
r −√

r0 −
√

log(1/δ2))2
+

2r∥Z∥2F
log(1/(1− ϵ))

.
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Tensor Experiments

Figure 2: ∥Z∥F = ε1 and ∥Z̃∥F = ε2 when X0 ∈ R100×100×10, r0 = 10, and (left)

r = r + 1 (center) r = 2r0 (right) r = n − 1.
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Tensor Experiments

Figure 3: X ∈ R512×512×47CT scan slices of the C1 vertebrae (left) ground truth 20th

slice, (center) naive matrix sketching recovery (right) tensor sketching recovery

Approach Memory Error

Tensor Sketching rn3(n1 + n2) + rn1 0.3825

Naive Matrix Sketching I rn3(n1 + n2) + rn1n3 0.8541

Naive Matrix Sketching II rn3(n1 + n2) + rn1 1.6181
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Overview

• Proved first theoretical guarantees characterizing error for noisy double

sketches

• Applied our results to obtain guarantees for low-rank matrix approximation

using noisy double sketches

• Applied our results to low-tubal-rank tensor recovery using noisy double

sketches
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Thank you!

“Robust recovery of low-rank matrices and low-tubal-rank tensors from noisy

sketches”

Work in collaboration with Dominik Stöger and Yizhe Zhu

arxiv:2206.00803

Github code available!
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