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Data, data everywhere

Examination

Inpatient health Patient-generated
monitoring health data

Medical Laboratory
imaging results

e Data as matrices

e Data is typically too large to store, transport, or process locally.

Problem

Given a large-scale low-rank matrix or tensor, how can one (a) store and (b)
retrieve the original matrix?



Matrix Sketching
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Instead of storing large n; x ny data X, keep lower dimensional of

the original data set.

Instead of storing large m1 X n» data X, keep lower dimensional sketches of

the original data set and X via

X=v*(sy")'y.
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Noisy Sketches
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TO FILE TRANSFER ERROR

e Corruptions in data storage, transfer, or sensing

e Noise by design: Differential Privacy?

2Upadhyay “The Price of Privacy for Low-rank Factorization” (2018).



Problem: Matrix Setting

Low rank matrix: Xo € C™*"™: a matrix of rank rp

e Sketching matrices: S € C"™*™ § € C™™ be two independent complex
Gaussian random matrices with r > ry

e Noise: Z € C™*™ 7 € C™*™, and Z is independent of S.
Sketches®:

e Recovery:

3Faze|, Candes, Recht, and Parrilo. “Compressed sensing and robust recovery of low rank
matrices” (2008).



Main Result: Robust Recovery

Let S € €™M, § € C™*™ be two independent standard complex Gaussian
matrices. Let Z € C"™*™ be any matrix, and 7 € C"™*™ be a matrix such that
(§, 2) is independent of S, and Y = §X0* + Z be almost surely of rank r with
ro < r < ni. For any 61,02, ¢ > 0 such that 1 > 6, > exp (— (Vr— \/5)2)
and e < 1, with probability at least 1 — 01 — d2 — ¢, the output X satisfies

X = XollF < Vil =0l2le, vrliZle
= Vai(T — i — \/log(1/8) | /log(1/( - ©))




Matrix Experiments
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Figure 1: ||Z||f = &1 and || Z]||F = e for X € R100X100 + — 10, and (left) r = rp + 1
(center) r = 2ry (right) r=n—1.



Application to Low-rank Matrix Approximation

e Approximately Low rank matrix: Xo € C™*"™: a matrix of rank ro
e Xo = X1 + E where Xj is the best rank r; approximation of Xp
Sketches:

Y = SXo + Z = SX; + (SE + Z),
Y =8X; +7Z=5X7+(SE" + 2).

e Recovery:
X=Y*(SY")'y.



Application: Low-rank Matrix Approximation

Let n < r < m. With probability at least 1 — §1 — 3d2 — € and when Y is of
rank r, the output X satisfies

[X = Xoll2w2 < 0741 (X0) & + 0,

where

. m(\/+\ﬁ+m+ V(7 v+ osTR)
VoL(Vr — /i — \/log(1/52)) log(1/(1 —¢))

. Vr(m = r)l|Z]|2-2 L VrlIZ]lao2

VE(Vr — i — /log(1/82))  /log(1/(1 —¢))



And Tensors too!
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e Data as tensors

e Data can (still) be too large to store, transport, or process locally.



Problem: Tensor Setting

e Low-tubal-rank Tensor: Xy € C™*™*™ with rank r

e Sketching tensors: Let S € C™*™ § € C"™™ be two independent complex
standard Gaussian random matrices with rop < r < ny.
S$1=5 8 =5and Sk =8 =0forall ke {2,...,ns}

o Noise: Z € CrXm*n Z g Crxmxns

e Sketches:

V=S + Z,
Y=28x Xo + Z,
e Previous related works:
e Matricization: Related work considered the recovery of low-tubal-rank
tensors through general linear Gaussian measurements of the form
y = Avec(X) - e.g.,
Lu, Feng, Lin, and Yan. “Exact low tubal rank tensor recovery from
Gaussian measurements” (2018).

e Noiseless: Qi and Yu.” T-singular values and t-sketching for third order
tensors” (2021).
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Tensor Set up: t-product

e The t-product was originally introduced in 2011 by Kilmer and Martin for
order three tensors, motivated to be a natural extension of matrix
multiplication

e Can be efficiently implemented using Fast Fourier Transforms

e Applied to problems in: Image deblurring, face recognition, video
compression, and much more

e Has been generalized to higher order tensors and well as different
transforms

e Advantage of using t-product: Linear-algebraic like framework (intuitive
extensions of notions such as transpose, identity, etc.)

e Trade-off: Orientation dependence

11



Tensor Set up: Notation

Definition (Operations on tensors)

Let A € C™*™*"  The unfold of a tensor is defined to be the frontal slice
stacking of that tensor. In other words,

Ay

Ao
unfold(A) = | . [ e ™™™

Ang
where A; = A. . ; denotes the i’ frontal slice of A. We define the inverse of

the unfold(-) as fold(-) so that fold(unfold(.A)) = .A. The block circulant
matrix of A is:

Al A Amr ... A
A A A, .. As

beirc(A) = | . ) ; _ | e g,
An3 An3—1 An3—2 ce e Al
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Tensor Set Up: Notation

Definition (Tensor t-product)
Let A € C"*¥X™ and B € C**™*" then the t-product between A and B,

denoted A x B, is a tensor of size n; X ny X n3 as is computed as:

A % B = fold(bcirc(.A)unfold(B)).

Definition (Mode-3 fast Fourier transformation (FFT))

The mode-3 FFT of a tensor A, denoted A, is obtained by applying the
discrete Fourier Transform matrix, F € C™*"™, to each A; ;. of A:

Al = [FAG e

Here, F is a unitary matrix, A; ;. is an n3-dimensional vector, and the product
is the usual matrix-vector product.
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Tensor Set Up: Low tubal rank

Definition (t-SVD)
The Tensor Singular Value Decomposition (t-SVD) of a tensor
M € C"*mxm s given by

M=UxSx*V",

where U € C™*™*™ and Y € C™*™*"™ are unitary tensors and
S € R™M*™X™ s 3 tubal tensor (a tensor in which each frontal slice is
diagonal), and * denotes the t-product.

Definition (Tubal rank)
The tubal rank of a tensor M = U * S * V* is the number of non-zero
singular tubes of S.
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Low Tubal-Rank Tensor Recovery

After performing a mode-3 Fourier transformation (3) on the tensors, the
measurements JA) and )Ni can be decomposed into n3 low-rank matrix double

sketches:
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Main Result: Tensor Recovery

If ro < r < m and for all k € [n3], fik is of rank r, then for any d1,d2,€ > 0
such that 1 > &, > exp(—(v/r — /1)) and € < 1, with probability at least
1— (014 62+ €)ns,

2r(n1 - DIZlIE 2r|| 2|7

— Vo — \/log(1/55))?  log(1/(1 —¢))’

X — X7 <
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Tensor Experiments
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Figure 2: ||Z||r = &1 and ||Z||F = &2 when Xy € R100%100x10 "y — 10 and (left)
r=r+1 (center) r = 2ry (right) r=n—1.

17



Tensor Experiments
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Figure 3: X € RS12X512X47CT scan slices of the C1 vertebrae (left) ground truth 20th
slice, (center) naive matrix sketching recovery (right) tensor sketching recovery

Approach Memory Error

Tensor Sketching rn3(m + m) + rm 0.3825
Naive Matrix Sketching | | rns(ni + n2) + rnins | 0.8541
Naive Matrix Sketching Il | rnz(n1 + m)+rn | 1.6181
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e Proved first theoretical guarantees characterizing error for noisy double
sketches

e Applied our results to obtain guarantees for low-rank matrix approximation
using noisy double sketches

e Applied our results to low-tubal-rank tensor recovery using noisy double

sketches
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Thank you!

“Robust recovery of low-rank matrices and low-tubal-rank tensors from noisy
sketches”
Work in collaboration with Dominik Stoger and Yizhe Zhu
arxiv:2206.00803
Github code available!
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