## Robust Recovery of Low-rank Tensors from Noisy Sketches

Anna Ma Assistant Professor Department of Mathematics University of California, Irvine

AWM Research Symposium Special Session on Tensor Methods for Data Modeling

## Data, data everywhere



- Data as matrices
- Data is typically too large to store, transport, or process locally.

### Problem

Given a large-scale low-rank matrix or tensor, how can one (a) store and (b) retrieve the original matrix?



#### Idea

Instead of storing large  $n_1 \times n_2$  data X, keep lower dimensional sketches of the original data set.

#### Idea

Instead of storing large  $n_1 \times n_2$  data X, keep lower dimensional sketches of the original data set and recover X via<sup>1</sup>

$$\hat{X} = \tilde{Y}^* (S\tilde{Y}^*)^{\dagger} Y.$$

<sup>1</sup>East Conder Dott and Douile "Commenced consistent and where the second states of the secon



- Corruptions in data storage, transfer, or sensing
- Noise by design: Differential Privacy<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>Upadhyay "The Price of Privacy for Low-rank Factorization" (2018).

## **Problem: Matrix Setting**

- Low rank matrix:  $X_0 \in \mathbb{C}^{n_1 \times n_2}$ : a matrix of rank  $r_0$
- Sketching matrices:  $S \in \mathbb{C}^{r \times n_1}$ ,  $\tilde{S} \in \mathbb{C}^{r \times n_2}$  be two independent complex Gaussian random matrices with  $r \ge r_0$
- Noise:  $Z \in \mathbb{C}^{r \times n_2}, \tilde{Z} \in \mathbb{C}^{r \times n_1}$ , and  $\tilde{Z}$  is independent of S.
- Sketches<sup>3</sup>:

 $Y = SX_0 + Z$  $\tilde{Y} = \tilde{S}X_0^* + \tilde{Z}$ 

• Recovery:

 $X = \tilde{Y}^* (S\tilde{Y}^*)^{\dagger} Y.$ 

<sup>&</sup>lt;sup>3</sup>Fazel, Candes, Recht, and Parrilo. "*Compressed sensing and robust recovery of low rank matrices*" (2008).

#### Theorem (M., Stöger, Zhu, 2023)

Let  $S \in \mathbb{C}^{r \times n_1}$ ,  $\tilde{S} \in \mathbb{C}^{r \times n_2}$  be two independent standard complex Gaussian matrices. Let  $Z \in \mathbb{C}^{r \times n_1}$  be any matrix, and  $\tilde{Z} \in \mathbb{C}^{r \times n_2}$  be a matrix such that  $(\tilde{S}, \tilde{Z})$  is independent of S, and  $\tilde{Y} = \tilde{S}X_0^* + \tilde{Z}$  be almost surely of rank r with  $r_0 < r < n_1$ . For any  $\delta_1, \delta_2, \epsilon > 0$  such that  $1 > \delta_2 > \exp\left(-\left(\sqrt{r} - \sqrt{r_0}\right)^2\right)$  and  $\epsilon < 1$ , with probability at least  $1 - \delta_1 - \delta_2 - \epsilon$ , the output X satisfies

$$\|X - X_0\|_F \le \frac{\sqrt{r(n_1 - r)} \|\tilde{Z}\|_F}{\sqrt{\delta_1}(\sqrt{r} - \sqrt{r_0} - \sqrt{\log(1/\delta_2)})} + \frac{\sqrt{r} \|Z\|_F}{\sqrt{\log(1/(1 - \epsilon))}}$$



Figure 1:  $||Z||_F = \varepsilon_1$  and  $||\tilde{Z}||_F = \varepsilon_2$  for  $X \in \mathbb{R}^{100 \times 100}$ , r = 10, and (left)  $r = r_0 + 1$  (center)  $r = 2r_0$  (right) r = n - 1.

- Approximately Low rank matrix:  $X_0 \in \mathbb{C}^{n_1 imes n_2}$ : a matrix of rank  $r_0$
- $X_0 = X_1 + E$  where  $X_1$  is the best rank  $r_1$  approximation of  $X_0$
- Sketches:

$$Y = SX_0 + Z = SX_1 + (SE + Z),$$
  
$$\tilde{Y} = \tilde{S}X_0^* + \tilde{Z} = \tilde{S}X_1^* + (\tilde{S}E^* + \tilde{Z}).$$

• Recovery:

$$X = \tilde{Y}^* (S \tilde{Y}^*)^{\dagger} Y.$$

Corollary: Low-rank matrix approximation (M., Stöger, Zhu, 2023)

Let  $r_1 < r < n_1$ . With probability at least  $1 - \delta_1 - 3\delta_2 - \epsilon$  and when  $\tilde{Y}$  is of rank r, the output X satisfies

$$\|X - X_0\|_{2\to 2} \le \sigma_{r_1+1}(X_0) \kappa + \sigma,$$

where

$$\begin{split} \kappa &= \left( \frac{\sqrt{r(n_1 - r)}(\sqrt{r} + \sqrt{n_2} + \sqrt{\log(1/\delta_2)})}{\sqrt{\delta_1}(\sqrt{r} - \sqrt{r_1} - \sqrt{\log(1/\delta_2)})} + \frac{\sqrt{r}\left(\sqrt{r} + \sqrt{n_1} + \sqrt{\log(1/\delta_2)}\right)}{\sqrt{\log(1/(1 - \epsilon))}} + 1 \right) \\ \sigma &= \frac{\sqrt{r(n_1 - r)} \|\tilde{Z}\|_{2 \to 2}}{\sqrt{\delta_1}(\sqrt{r} - \sqrt{r_1} - \sqrt{\log(1/\delta_2)})} + \frac{\sqrt{r} \|Z\|_{2 \to 2}}{\sqrt{\log(1/(1 - \epsilon))}}. \end{split}$$



- Data as tensors
- Data can (still) be too large to store, transport, or process locally.

## **Problem: Tensor Setting**

- Low-tubal-rank Tensor:  $\mathcal{X}_0 \in \mathbb{C}^{n_1 \times n_2 \times n_3}$  with rank  $r_0$
- Sketching tensors: Let S ∈ C<sup>r×n</sup>, Š ∈ C<sup>r×n</sup> be two independent complex standard Gaussian random matrices with r<sub>0</sub> < r < n<sub>1</sub>.
  S<sub>1</sub> = S, Š<sub>1</sub> = Š and S<sub>k</sub> = Š<sub>k</sub> = 0 for all k ∈ {2,..., n<sub>3</sub>}
- Noise:  $\mathcal{Z} \in \mathbb{C}^{r \times n_2 \times n_3}$ ,  $\tilde{\mathcal{Z}} \in \mathbb{C}^{r \times n_1 \times n_3}$
- Sketches:

$$\begin{split} \mathcal{Y} &= \mathcal{S} \ast \mathcal{X}_0 + \mathcal{Z}, \\ \tilde{\mathcal{Y}} &= \tilde{\mathcal{S}} \ast \mathcal{X}_0^* + \tilde{\mathcal{Z}}, \end{split}$$

- Previous related works:
  - Matricization: Related work considered the recovery of low-tubal-rank tensors through general linear Gaussian measurements of the form y = Avec(X) e.g.,
    Lu, Feng, Lin, and Yan. "Exact low tubal rank tensor recovery from

Lu, Feng, Lin, and Yan. "Exact low tubal rank tensor recovery from Gaussian measurements" (2018).

• Noiseless: Qi and Yu." *T-singular values and t-sketching for third order tensors*" (2021).

- The t-product was originally introduced in 2011 by Kilmer and Martin for order three tensors, motivated to be a natural extension of matrix multiplication
- Can be efficiently implemented using Fast Fourier Transforms
- Applied to problems in: Image deblurring, face recognition, video compression, and much more
- Has been generalized to higher order tensors and well as different transforms
- Advantage of using t-product: Linear-algebraic like framework (intuitive extensions of notions such as transpose, identity, etc.)
- Trade-off: Orientation dependence

## Tensor Set up: Notation

## Definition (Operations on tensors)

Let  $\mathcal{A} \in \mathbb{C}^{n_1 \times n_2 \times n_3}$ . The unfold of a tensor is defined to be the frontal slice stacking of that tensor. In other words,

unfold
$$(\mathcal{A}) = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_{n_3} \end{pmatrix} \in \mathbb{C}^{n_1 n_3 \times n_2},$$

where  $A_i = A_{:,:,i}$  denotes the *i*<sup>th</sup> frontal slice of A. We define the inverse of the unfold(·) as fold(·) so that fold(unfold(A)) = A. The block circulant matrix of A is:

$$\mathsf{bcirc}(\mathcal{A}) = \begin{pmatrix} A_1 & A_{n_3} & A_{n_3-1} & \dots & A_2 \\ A_2 & A_1 & A_{n_3} & \dots & A_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A_{n_3} & A_{n_3-1} & A_{n_3-2} & \dots & A_1 \end{pmatrix} \in \mathbb{C}^{n_1 n_3 \times n_2 n_3}$$

Definition (Tensor t-product)

Let  $\mathcal{A} \in \mathbb{C}^{n_1 \times \ell \times n_3}$  and  $\mathcal{B} \in \mathbb{C}^{\ell \times n_2 \times n_3}$  then the t-product between  $\mathcal{A}$  and  $\mathcal{B}$ , denoted  $\mathcal{A} * \mathcal{B}$ , is a tensor of size  $n_1 \times n_2 \times n_3$  as is computed as:

 $\mathcal{A} * \mathcal{B} = \mathsf{fold}(\mathsf{bcirc}(\mathcal{A})\mathsf{unfold}(\mathcal{B})).$ 

### Definition (Mode-3 fast Fourier transformation (FFT))

The mode-3 FFT of a tensor  $\mathcal{A}$ , denoted  $\widehat{\mathcal{A}}$ , is obtained by applying the discrete Fourier Transform matrix,  $F \in \mathbb{C}^{n_3 \times n_3}$ , to each  $\mathcal{A}_{i,j,:}$  of  $\mathcal{A}$ :

$$\widehat{\mathcal{A}}_{i,j,:} = \mathcal{F}\mathcal{A}_{i,j,:}.$$

Here, F is a unitary matrix,  $A_{i,j,:}$  is an  $n_3$ -dimensional vector, and the product is the usual matrix-vector product.

## Definition (t-SVD)

The Tensor Singular Value Decomposition (t-SVD) of a tensor  $\mathcal{M} \in \mathbb{C}^{n_1 \times n_2 \times n_3}$  is given by

 $\mathcal{M} = \mathcal{U} \ast \mathcal{S} \ast \mathcal{V}^{\ast},$ 

where  $\mathcal{U} \in \mathbb{C}^{n_1 \times n_1 \times n_3}$  and  $\mathcal{V} \in \mathbb{C}^{n_2 \times n_2 \times n_3}$  are unitary tensors and  $\mathcal{S} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$  is a tubal tensor (a tensor in which each frontal slice is diagonal), and \* denotes the t-product.

#### Definition (Tubal rank)

The tubal rank of a tensor  $\mathcal{M} = \mathcal{U} * \mathcal{S} * \mathcal{V}^*$  is the number of non-zero singular tubes of  $\mathcal{S}$ .

After performing a mode-3 Fourier transformation (3) on the tensors, the measurements  $\hat{\mathcal{Y}}$  and  $\hat{\mathcal{J}}$  can be decomposed into  $n_3$  low-rank matrix double sketches:

$$\widehat{\mathcal{Y}}_i = \widehat{\mathcal{S}}_i \widehat{\mathcal{X}}_{0i} + \widehat{\mathcal{Z}}, \ \widehat{\widetilde{\mathcal{Y}}}_i = \widehat{\widetilde{\mathcal{S}}}_i * \widehat{\mathcal{X}}_{0i}^* + \widehat{\widetilde{\mathcal{Z}}}_i, \ i \in [n_3].$$

The double sketch algorithm outputs

$$\widehat{\mathcal{X}}_i = \widehat{\widetilde{\mathcal{Y}}}_i^* (\widehat{\mathcal{S}}_i \widehat{\widetilde{\mathcal{Y}}}_i^*)^\dagger \widehat{\mathcal{Y}}_i.$$

# Corollary: Robust Recovery of Low-Tubal-Rank Tensors (M., Stöger, Zhu, 2023)

If  $r_0 < r < n_1$  and for all  $k \in [n_3]$ ,  $\hat{\mathcal{Y}}_k$  is of rank r, then for any  $\delta_1, \delta_2, \epsilon > 0$  such that  $1 > \delta_2 > \exp(-(\sqrt{r} - \sqrt{r_0})^2)$  and  $\epsilon < 1$ , with probability at least  $1 - (\delta_1 + \delta_2 + \epsilon)n_3$ ,

$$\|\mathcal{X} - \mathcal{X}_0\|_F^2 \le \frac{2r(n_1 - r)\|\tilde{\mathcal{Z}}\|_F^2}{\delta_1(\sqrt{r} - \sqrt{r_0} - \sqrt{\log(1/\delta_2)})^2} + \frac{2r\|\mathcal{Z}\|_F^2}{\log(1/(1 - \epsilon))}$$



**Figure 2:**  $\|\mathcal{Z}\|_F = \varepsilon_1$  and  $\|\tilde{\mathcal{Z}}\|_F = \varepsilon_2$  when  $\mathcal{X}_0 \in \mathbb{R}^{100 \times 100 \times 10}$ ,  $r_0 = 10$ , and (left) r = r + 1 (center)  $r = 2r_0$  (right) r = n - 1.



Figure 3:  $\mathcal{X} \in \mathbb{R}^{512 \times 512 \times 47}$ CT scan slices of the C1 vertebrae (left) ground truth 20th slice, (center) naive matrix sketching recovery (right) tensor sketching recovery

| Approach                  | Memory                      | Error  |
|---------------------------|-----------------------------|--------|
| Tensor Sketching          | $rn_3(n_1+n_2)+rn_1$        | 0.3825 |
| Naive Matrix Sketching I  | $rn_3(n_1 + n_2) + rn_1n_3$ | 0.8541 |
| Naive Matrix Sketching II | $rn_3(n_1+n_2)+rn_1$        | 1.6181 |

- Proved first theoretical guarantees characterizing error for noisy double sketches
- Applied our results to obtain guarantees for low-rank matrix approximation using noisy double sketches
- Applied our results to low-tubal-rank tensor recovery using noisy double sketches

"Robust recovery of low-rank matrices and low-tubal-rank tensors from noisy sketches" Work in collaboration with Dominik Stöger and Yizhe Zhu arxiv:2206.00803 Github code available!

